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Abstract
We will investigate three person’s social relations discussed by G.Simmel using game

theory. Firstly, cooperative games are defined through non-cooperative games. Non-
cooperative games treated in this paper are symmetric games appeared in the discussion
of social dilemma situation or order problem in social sciences. We will introduce the
notion of strictly totally profitable games which guarantee better individual benefit by
cooperating with all members than individual benefit under non-cooperative situation.
This condition is a sufficient condition for non-emptiness of the core of the coalitional
game. As main results, we will prove that under some conditions there exist games which
are strictly totally profitable or have empty core 1.

keywords: sociology of small groups, Simmel’s proposition, triads, game theory,

1 Introduction

The study of three person groups in social sciences will be back to G.Simmel’s
works([24], 1907). Mills started his article([13], 1953) wrighting ”In drawing his fun-
damental distinction between two-person groups and all groups of larger size, Simmel
called attention to certain characteristics of the three-person situation.” Also it is Mills
who first pointed out that there is a closed relation between Simmel’s small group theory
and von Neumann-Morgenstern’s game theory. He wrote ”In this respect, Simmel and
von Neumann and Morgenstern share common ground. One assumes and the others plan

1The essential part of this paper has been announced at the 41-st Conference of the Japanese Asso-

ciation for Mathematical Sociology (2006.3.3-4.) held at University of Tokyo.
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for an elementary differentiating tendency in the three-some: namely, segregation into
a pair and an other”(p.351r). In fact, von Neumann-Morgenstern’s famous book([31]),
they argued ”The following seems worth noting: coalitions occur first in a zero-sum game
when the number of participants in the game reaches three. In a two-person game there
are not enough players to go around: a coalition absorbs at least two players, and then
nobody is left to oppose. But while the three-person game of itself implies coalitions,
the scarcity of players is still such as to circumscribe these coalitions in a definite way:
a coalition must consist of precisely two players and be directed against precisely one
(the remaining) player, ”(p.221, footnote 2) or ”It seems worth emphasizing that this
characteristically ”social” phenomena occurs only in the case of three or more partici-
pants.”(p.225, footnote 2.) They also seems to be very much concerning about social
problems since they are wrighting at Preface to First Edition that ”The applications
are of two kinds: On the one hand to games in the proper sense, on the other hand
to economic and sociological problems which, as we hope to show, are best approached
from this direction.,,, Our major interest is of course, in the economic and sociological
direction.”

Unlike Milles who investigated empirical data in the laboratory, Caplow([2]) theoret-
ically analyzed the coalition pattern of the triad. He examined the models of the triad
whose members are not identical in power. He classified logically the three person’s
relations A ≥ B ≥ C, and A > (B + C) or A < (B + C) into 6 types, but unlike our
setting, he never considered game theoretic relationships between each member.

Unfortunately, not only von Neumann-Morgenstern but also Mills himself did not
developed their arguments more precisely on the fields of sociological phenomena by
using game theory2.

It is Nakano([19],[20]) who first tried to formulate concretely the relation between
Simmel’s triads and von Neumann-Morgenstern’s coalitional game theory3 . He primarily
asserted that Simmel’s proposition ”Tendency to divide into a coalition of two members
against the third” correspondes to emptiness of the core of three person cooperative
games and von Neumann-Morgenstern’s stability solutions, especially discriminatory so-
lutions correspond to Simmel’s three different types of situations,i.e. ”the non-partisan
and the mediator”, ”the tertius gaudens” and ”divide et impera”. But he also noticed

2We have a criticism from theoretical point of view that von Neumann-Morgenstern always firstly

discussed zero-sum games then, generalized them to non-zero sum n person games by reducing zero-sum

(n + 1) person game adding a damy player, but this formulation , though theoretically simple, is not

suitable for applying social phenomena because the damy player does not have any meaning in social

context(cf. [31],p221 footnote. ”the genreral n-person game is closely related to the zero-sum n+1-person

game.”). As Suzuki([28]) pointed out, the word ”core” does not appear in von Neumann-Morgenstern’s

book supposedly becouse any zero-sum game have empty core, but in this report, we will show that even

if the begining non-cooperative game is in social dilemma situation, the cooperative game has possibly

the core (see our Theoem 1 and also the footnote of the next page).
3von Neumann-Morgenstern([31]) wrote in the preliminary survey of zero-sum four-person games

(Chapter VII), ”Indeed, it will be noted that the interpretaion of the mathematical results of this phase

leads quite naturally to specific ”social” concepts and formulations.”
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the possibility that even if the core is not empty, three person group may split into two
and one through bargaining. His assersion is a little bit ambiguous and it seems to be
not so crealy characterized the situations.

The major objective of our investigation is to formulate three person groups based on
no-cooperative game theory. Non-cooperative games investigated in this paper are so-
called social dilemma games which are described as involving a conflict between ”individ-
ual rationality” and ”group rationality” which appeared in the context of Hamburger([8]),
Schelling([25]), Daws([5],[6]), Muto([16],[17]) and so many peaple.

2 Cooperative games defined from non-cooperative games

First of all, we will formulate a cooperative game with a transferable utility or a
coalitional game with side payment by defining a charastaristic function from a non-
cooperative game. Our formulation is essentially equivalent to those of [21],[30],[22]
but we rewright it by using random variables defined on an abstract probability space
(Ω, F , P ) for the reason that so-called mixed strategies are nathing but random vari-
ables.

Let N = {1, 2, . . . , n} be a set constituting n players. To avoid triviality, we assume
the number of players is greater than or equal to 3 (i.e. |N | ≥ 3). Let Si ; i ∈ N and
ui(s) ; i ∈ N, s = (s1, . . . , sn) ∈ Πi∈NSi be a player i’s strategy set4 and a utility function
respectively. For a subset T of N , −T means a complementary set N −T and we denote
by sT = {si ; i ∈ T} a strategy set of players’ set T . Then we can represent a strategy
set s of all players by s = (sT , s−T ) and the utility function ui(s) by ui(sT , s−T ).

Now for any non-empty subset T , we can set up a random variable XT taking its
values on a set Πi∈T Si defined on an abstract probability space (Ω, F , P ). We denote
by LT a set of the all possible T -valued random variables. According to von Neumann-
Morgenstern, a coaliton means a subset T of N and a profit v(T ) for this coalition
(so-called a characteristic function) is defined through the max-min principle as follows
5:

4Here we assume that each Si is a finite set but this assumption is not essential. To define random

variables (=mixed strategies) , it is enough to assume that Si is a measurable space.
5Harsanyi([9], p.214) criticizes an adaptation of a maximin strategy to define a characteristic function

saying ”But this model is open to the following objection: Why should either side expect the other side

to choose the strategy of the highest damaging power irrespective of the costs to itself? This may be

a very natural expectation in a constant-sum game, where one side’s loss is necessarily the other side’s

gain, and vice versa, so that each side must cause the highest possible damage to the other side in order

to maximize its own joint payoff. But in a variable-sum game one would rather expect that each side

would try to find a suitable compromise between trying to maximize the costs of a conflict to the other

side and trying to minimize the costs of a conflict to itself - in other words, between trying to minimize

the joint payoff of the opposing coalition and trying maximize the joint payoff of their own coalition.”

We agree his comment but at least mathematical point of view, only a maximin strategy guarantees

superadditivity of the characteristic function.
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Definition 16. We set v(∅) = 0 and for N ⊃ T 6= ∅ and 6= N ,

v(T ) = sup
XT∈LT

inf
X−T∈L−T

∑

i∈T

E[ui(XT , X−T )],

and
v(N) = sup

XN∈LN

∑

i∈N

E[ui(XN )],

where we assume that two random variables XT and X−T are independent.
This game is so-called a cooperative game with side payment. In this formulation,

as von Neumann-Morgenstern themselves wrote([31], p.240), ”v(T ) describes what a
given coalition of players (specifically, the set T ) can obtain from their opponents(the
set −T ). . . , but it fails to describe how the proceeds of the enterprise are to be divided
among the partners k belonging to T .” Also they wrote(p.231) ”If two players, say 1 and
2, decide to cooperate completely. . . , postponing temporarily, for a later settlement, the
question of distribution, i.e. of the compensations to be paid between partners. . ..” We
also do not or can not discuss how to distribute their profit among the members in the
coalition T , but in this paper we suppose that they will distribute their profit equally
among them.

Proposition 1. (superadditivity of v(T ), [21] p.190, [22] Lemma in p.169, [30] Theorem
7.1.)

v(T ∪ U) ≥ v(T ) + v(U)

holds for any subset T and U such that T ∩ U = ∅.
Proof. First we note that

v(T ∪ U) = sup
XT∪U∈LT∪U

inf
X−(T∪U)∈L−(T∪U)

∑

i∈T∪U

E[ui(XT∪U , X−(T∪U))]

≥ sup
XT∈LT

sup
XU∈LU

inf
X−(T∪U)∈L−(T∪U)

(
∑

i∈T

E[ui(XT , XU , X−(T∪U))]

+
∑

i∈U

E[ui(XT , XU , X−(T∪U))]),

here we can assume that two random variables XT and XU are independent and also
both are independent of X−(T∪U) since (XT , XU ) is in LT∪U which is independent of
L−(T∪U).

Since (XU , X−(T∪U)) ∈ L−T and is independent of XT , and analogously (XT , X−(T∪U))
∈ L−U and is independent of XU , by definition of ”inf”, we have

inf
X−(T∪U)∈L−(T∪U)

(
∑

i∈T

E[ui(XT , XU , X−(T∪U))] +
∑

i∈U

E[ui(XT , XU , X−(T∪U))])

6This definition is essentially the same as that of ([21],p.189). ([22],p.169), ([30].p.167). Suzuki([30])

and Harsanyi([9]) call this type of characteristic function a von Neumann-Morgenstern characteristic

function though, in the original book([31]), they are discussing very vague way in case of zero-sum n

person games. Ruce-Liffa([12], Chapter 8) axiomatically defined characteristic funcions and they do not

discuss cooperative games defined from non-cooperative games.
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≥ inf
X−T∈L−T

∑

i∈T

E[ui(XT , X−T )] + inf
X−U∈L−U

∑

i∈U

E[ui(XU , X−U )].

Since the above inequality holds for any XT ∈ LT and XU ∈ LU , and XT is independent
of (XU , X−(T∪U)) = X−T ∈ L−T and XU is independent of (XT , X−(T∪U)) = X−U ∈
L−U , we finally get

v(T ∪ U) ≥ sup
XT∈LT

inf
X−T∈L−T

∑

i∈T

E[ui(XT , X−T )] + sup
XU∈LU

inf
X−U∈L−U

∑

i∈U

E[ui(XU , X−U )]

= v(T ) + v(U). (Q.E.D)

We remark that by superadditivity, for any non-empty subset T ,

v(T ) ≥
∑

i∈T

v({i})

holds, which means that each player may have some motivation to co-operate with
some other members as far as they accept max-min principle, but for having explicit
motivation, we need some more condition which is a little bit stronger condition than
non-emptiness of a set of the core.

Definition 2. Totally Profitable Game.7 A coalitional game (N, v) with v(N) ≥ 0
is called totally profitable if and only if

v(N)
|N | ≥

v(T )
|T |

holds for any non-empty coalition. where |T | denotes the total number of the elements
of T .

Definition 3. Strictly Totally Profitable Game
A coalitional game (N, v) with v(N) ≥ 0 is called a strictly totally profitable game if

and only if
v(N)
|N | >

v(T )
|T |

holds for any non-empty coalition T 6= N8,

By definition, if a game (N, v) is totally profitable, then it is necessarily a balanced
game which is known in the usual game theory. Therefore, any totally profitable game
has non-empty core([25] , see also appendix). Obviously, in a (strictly) totally profitable
game, each player, he or she has (strictly) better benefit under cooperation with all
members than indivisual or partially coalitional profit.

7Suzuki-Nakamura([29]) called this a game having ”weak mean coalition power” but our major concern

is when strict inequality holds.
8If the game is not essential, then v(N) =

∑n

i=1
v({i}) holds. Therefore, if a game is strictly totally

profitable, then necessarily the game is essential.

5



3 Three person cooperative games defined by social dilemma

games

Daws([5]) first gave a formal definition of social dilemma games considering that
each of n players has a choice between two strategies D (for ”Detecting”) and C (for
”Cooperating”). Let D(m) be the player’s payoff for a D choice when m players choose
C, and let C(m) be the payoff for a C choice when m players choose C, where the m
refer to the number of players who choose C, not to a particular set of m players. He
called a social dilemma game if C(n) > D(0) and D(m) > C(m + 1) for 0 ≤ m ≤ n− 1
hold.

Muto([16], [17]) has intensively inspected the above games. He defines ”cooperative
situations” from the viewpoint of free ride and classified them.

Here after we assume that |N | = n = 3, that is, we will focus on three person games.
In this case, we need 6 parameters D(m) ; m = 0, 1, 2 and C(m) ; m = 1, 2, 3 . But first,
for convenience, we assume

Assumption 1. D(0) = 0.

To describe the Nash equilibrium of our non-cooperate games, it is convenient to
introduce the following parameters.

α0 = D(0)− C(1), α1 = D(1)− C(2), α2 = D(2)− C(3)
β1 = D(1)− C(1), β2 = D(2)− C(2)

Equivalently, under Assumption 1, we have

C(1) = −α0, C(2) = β1 − α1 − α0, C(3) = β2 + β1 − α2 − α1 − α0

D(0) = 0, D(1) = β1 − α0, D(2) = β2 + β1 − α1 − α0

As usual, Nash equlibrium means a social situation where no one has a motivation
to change his or her choice. Then a social situation in which m persons choose C is a
Nash equilibrium if and only if αm−1 < 0 and αm > 0 when m = 1, 2. A social situation
in which no person chooses C is a Nash equilibrium if and only if α0 > 0 and a social
situation in which every person chooses C is a Nash equilibrium if and only if α2 < 0.

Following Muto([17]), we give a table of 8 possible cases corresponding to the sig-
nature of αi ; i = 1, 2, 3 and Nash equilibria. The classification is due to Muto when
n = 3.
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α0 α1 α2 Nash equilibrium classification
+ + + m = 0 Prisoner’s dilemma
+ + − m = 0, 3 Assurance game
+ − + m = 0, 2
+ − − m = 0, 3 Assurance game
− + + m = 1 Chicken game
− + − m = 1, 3
− − + m = 2 Chicken game
− − − m = 3 No-conflict game

Now we focus on Muto’s cooperative situation, that is,

Assumption 2. （Muto([17]）
(i) Cost for cooperation: D(m) > C(m) ; m = 1, 2 (⇐⇒ β1 > 0, β2 > 0),
(ii)Guarantee for common profit: D(0) < max

1≤m≤3
C(m).

To evaluate the value of our characteristic function v under our Assumptions, set

f(m) = mC(m) + (3−m)D(m), 0 ≤ m ≤ 3.

Then, for N = {1, 2, 3} , we have

v(N) = max
0≤m≤3

f(m)(≥ f(0) = 0).

The relations between f(m) and our parameters are the followings:
f(0) = 3D(0) = 0,

f(1) = C(1) + 2D(1) = 2β1 − 3α0,
f(2) = 2C(2) + D(2) = β2 + 3β1 − 3α1 − 3α0,

f(3) = 3C(3) = 3β2 + 3β1 − 3α2 − 3α1 − 3α0.

When T = {i} ; i = 1, 2, 3, we have

v({i}) = sup
XT

inf
X−T

E[ui(XT , X−T )]

= max{ min
1≤m≤3

C(m), min
0≤m≤2

D(m)}.

Now we have to evaluate v(T ) for T = {1, 2}. When XT is fixed, the infimum
attains at the end of the segments, therefore it is enough to check at P (X−T = C) = 1
or P (X−T = D) = 1 , that is,

v(T ) = sup
XT

min
s3

2∑

i=1

E[ui(XT , s3)].

Here we fix XT , and set

IC =
2∑

i=1

E[ui(XT , C)]
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and

ID =
2∑

i=1

E[ui(XT , D)].

More precisely, we have

IC =
2∑

i=1

E[ui(XT , C)]

= (
2∑

i=1

ui(C, C, C))P (X1 = C, X2 = C)

+ (
2∑

i=1

ui(C, D, C))P (X1 = C, X2 = D)

+ (
2∑

i=1

ui(D, C, C))P (X1 = D, X2 = C)

+ (
2∑

i=1

ui(D, D, C))P (X1 = D, X2 = D).

By virtue of our formulations, we have

IC = 2C(3)P (X1 = C, X2 = C)

+ (C(2) + D(2))P (X1 = C, X2 = D or X1 = D, X2 = C)

+ 2D(1)P (X1 = D, X2 = D).

Analogously,

ID = 2C(2)P (X1 = C, X2 = C)

+ (C(1) + D(1))P (X1 = C, X2 = D or X1 = D, X2 = C)

+ 2D(0)P (X1 = D, X2 = D).

In order to evaluate the order between IC and ID, we consider the difference of IC and
ID.

IC − ID = (2C(3)− 2C(2))P (X1 = C, X2 = C)

+ (C(2)− C(1) + D(2)−D(1))P (X1 = C, X2 = D or X1 = D, X2 = C)

+ 2D(1)P (X1 = D, X2 = D)

= 2(β2 − α2)P (X1 = C, X2 = C)

+ (β2 + β1 − 2α1)P (X1 = C, X2 = D or X1 = D, X2 = C)

+ 2(β1 − α0)P (X1 = D, X2 = D).

Under our Assumptions, we classify our situation as a classification of the game.
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Class I.
I-1. β1 − α0 ≥ 0 (⇐⇒ D(1) ≥ 0),
I-2. β2 + β1 − 2α1 ≥ 0 (⇐⇒ C(2) + D(2) ≥ C(1) + D(1)),
I-3. β2 − α2 > 0 (⇐⇒ C(3) > C(2)).

In thie class, always IC ≥ ID holds regardless of the distribution of XT . Therefore,
in this class, we can easily determine the value of the characteristic function v({1, 2})
and in consequence, we have the following theorem.

Theorem 1. Under Assumptions 1 and 2, if a game belongs to Class 1, then it is
strictly totally profitable.

Proof. In this case, the characteristic function for T = {1, 2} is, by definition,

v(T ) = sup
XT

ID,

where

ID = 2C(2)P (X1 = C, X2 = C)

+ (C(1) + D(1))P (X1 = C, X2 = D or X1 = D, X2 = C)

+ 2D(0)P (X1 = D, X2 = D).

So we get
v(T ) = max{2C(2), (C(1) + D(1)), 0}.

Now we will check all possible cases.
(i) When C(2) ≤ 0 and C(1) + D(1) ≤ 0 hold, then we have v(T ) = 0. Since

C(1) + D(1) ≤ 0 and I-1 imply C(1) ≤ 0, we have C(3) > 0 by Assumption 2 (ii).
Therefore we have f(3)/3 = C(3) > v(T )/2 which implies v(N)/3 = max{f(m)/3} ≥
f(3)/3 > v(T )/2 and Theorem 1 holds.

Next, we assume that

(∗) max{2C(2), (C(1) + D(1))} > 0.

Case I-a. When 2C(2)−C(1)−D(1) = β1 − 2α1 ≥ 0 holds, v(T ) can be expressed in
the following form:

v(T ) = 2C(2) = 2(β1 − α1 − α0).

Since
f(3)/3− v(T )/2 = C(3)− C(2) > 0 (by I-3),

we have v(N)/3 = max{f(m)}/3 ≥ f(3)/3 > v(T )/2 , which means that Theorem 1
holds.
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Case I-b. When 2C(2)−C(1)−D(1) = β1− 2α1 ≤ 0 holds, v(T ) can be expressed in
the following form:

v(T ) = C(1) + D(1) = β1 − 2α0.

Since

f(1)/3− v(T )/2 = (C(1) + 2D(1))/3− (C(1) + D(1))/2

= (D(1)− C(1))/6 = β1/6 > 0 (by Assumption 2(i)),

we have v(N)/3 = max{f(m)}/3 ≥ f(1)/3 > v(T )/2 , which means that Theorem 1
holds. (End of the proof of Theorem 1).

Corollary 1． Under Assumptions 1 and 2, a no-conflict game (αi < 0, ; i = 0, 1, 2）is
always strictly totally profitable. (It seems very natural consequence.)

Proof. In this case the games clearly belongs to Class I.

Corollary 2. Under Assumptions 1 and 2, all type of non-cooperative games classified
by Muto([16]), i.e. Prisoner’s dilemma games, Chicken games, Assurance games and Non-
conflict games may possibly be strictly totally profitable in the cooperative game defined
through the maximin strategy from the original non-cooperative games. Moreover, the
cost for cooperation β1, β2 becomes bigger, that is, free ride may be more benefit, then
the range of strictly total profitability becomes larger, which seems intuitively to be
paradoxical.

Proof. It is obvious by cheking the condition of Class I.

4 Remarks

1. Under Assumptions 1 and 2, the following 3 cases never happen simultaneously,
that is, it is not the case that IC ≤ ID holds for any XT under Assumptions 1 and 2,

`-1: β1 − α0 ≤ 0 (⇐⇒ D(1) ≤ 0),
`-2: β2 + β1 − 2α1 ≤ 0 (⇐⇒ C(2) + D(2) ≤ C(1) + D(1)),
`-3: β2 − α2 ≤ 0 (⇐⇒ C(3) ≤ C(2)).

Proof. By Assumptions 1, 2(i) and `-1, 0 ≥ D(1) > C(1) holds．By Assumption
2(i) and `-1, 2, 0 ≥ 2D(1) > C(1) + D(1) ≥ C(2) + D(2) > 2C(2) holds．Also by `-3
0 ≥ C(2) ≥ C(3) holds. Therefore，we have max{C(1), C(2), C(3)} ≤ 0 = D(0) which
contradics Assumption 2(ii).

2. If we assume Assumptions 1, 2(i) and `-1,2,3, then the game is totally profitable.
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Proof. In this case, for T = {1, 2} we have

v(T ) = sup
XT

IC .

Since

IC = 2C(3)P (X1 = C, X2 = C)

+ (C(2) + D(2))P (X1 = C, X2 = D or X1 = D, X2 = C)

+ 2D(1)P (X1 = D, X2 = D)

as is the estimation in the proof of Remark 1,

v(T ) = max{2C(3), (C(2) + D(2)), 2D(1))} ≤ 0,

which follows v(N)/3 ≥ f(0)/3 = 0 ≥ v(T )/2.

The above case may happen in the situation that you are surrounded outside by
enemies. In such case, it would be better off to stay all together than to run away left
your friend(s).

3. Kimura([11]) discussed 4 cases of social dilemma situations in the context of Olson
problems. The cooperative games defined from his all 4 cases through max-min principle
are strictly totally profitable in our sense.

4. The relation between Simmel’s three classifications and our formulation. When we
see only the characteristic function of a cooperative game as Nakano did, if the game
has non-empty core, then there would be no reason to segregate into a pair and an
other, on the other hand, if the game has empty core, then there would be no reason
to stay in one three person group. In contrast, in our formulation we investigate two
different point of view simultaneously, group rationality under the maximin strategy
and individual rationality assuming no cooperation each other. And in our point of
view, what is Simmel’s problem of three person group is a kind of conflicts or dilemma
situations between these two rationality.

For examples, Simmel’s ”the non-partisan and the mediator” may correspond, in
our formulation, to the situation that Ego is ”C” but the other two are ”D, D” and
α0 < 0, α1 > 0, α2 > 0 (i.e. m = 1 is only Nash equilibrium and Chicken game in
Muto’s classification). Simmel’s ”the tertius gaudens” may correspond to the situation
that Ego is ”D” but the other two are ”C,C” and α0 < 0, α1 < 0, α2 > 0 (i.e.
m = 2 is only Nash equilibrium and Chicken game in Muto’s classification). Simmel’s
”divide et impera” may correspond to the situation that all three are ”D,D, D” and
α0 > 0, α1 > 0, α2 > 0 (i.e. m = 0 is only Nash equilibrium and Prisoner’s dilemma in
Muto’s classification). But in Simmel’s classifications each member supposedly does not
have equal power and ties asymmetrically but in our formulation they are in symmetric
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relations.

5. If Assumption 2 is not satisfied，say, β1 < 0, β2 > 0 , there are a region of the pa-
rameters αi ; i = 0, 1, 2 such that the game is not totally profitable(see the next section).
These examples seem to show that without the Muto’s cooperative situation([17]) ( our
Assumption 2) total profitability will be not guaranteed. On the contrary, under the
Muto’s cooperative situation, most case the games are totally profitable (Theorem 1).
But the Muto’s cooperative situation does not meen ”all C strategy” (m = n) is Pareto
efficient nor Nash equilibrium. Therefore Theorem 1 will show many kinds of conflicts
between group rationality and individual rationality.

6. We can not prove that whether or not only Assamption 1 and 2,(i),(ii) guarantee
(strictly) total profitability. If it is true, Muto’s conditions(our Assumption 2) might be
very much meaningfull.

5 Examples of games which are not totally profitable

We assume that D(0) = 0 (Assumption 1) and the followings: (the case that for any
XT , IC ≥ ID holds)

I-1. β1 − α0 ≥ 0 (⇐⇒ D(1) ≥ 0),
I-2. β2 + β1 − 2α1 > 0 (⇐⇒ C(2) + D(2) > C(1) + D(1)),
I-3. β2 − α2 > 0 (⇐⇒ C(3) > C(2)),
I-b. C(1) + D(1) > max{2C(2), 0}
Under the above conditions, we have

v(T ) = C(1) + D(1) = β1 − 2α0 > 0.

Moreover we asume
II-1. β1 < 0,
II-2. α2 > 0,
II-3. β1 + β2 − 2α1 = xα2, (x > 0),
II-4. β2 − α2 = yα2, (y > 0), where x, y are two auxiliary parameters.

Theorem 2. If a three person game (N, v) has the parameter (x, y) which satisfies
−x + 1 > y > 3x − 1, then it is not totally profitable, (equivalently it has the empty
core). Since by the conditions we have α0 < 0, α2 > 0, so the non-cooperative game is
a chicken game. The range of (x, y) which satisfies the inequality is following Figure 1:
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Figure 1.

Proof. First we remark that v(T )/2 − f(0)/3 = v(T )/2 > 0. By our Assumptions,
we have

v(T )/2− f(1)/3 = (β1 − 2α0)/2− (2β1 − 3α0)/3

= −β1

6
> 0.

v(T )/2− f(2)/3 = (β1 − 2α0)/2− (β2 + 3β1 − 3α1 − 3α0)/3

=
β2

6
− 1

2
(β1 + β2 − 2α1)

=
α2

6
(y − 3x + 1).

Therefore, we have
v(T )/2− f(2)/3 > 0 ⇐⇒ y > 3x− 1.

v(T )/2− f(3)/3 = (β1 − 2α0)/2− (β2 + β1 − α2 − α1 − α0)

= −1
2
(β2 − α2) +

α2

2
− xα2

2
=

α2

2
(−y − x + 1),

and
v(T )/2− f(3)/3 > 0 ⇐⇒ y < −x + 1.

Therefore we conclude that if (x, y) satisfies −x + 1 > y > 3x− 1, then

v(T )
2

> max
0≤m≤3

f(m)
3

=
v(N)

3

holds, which means that the game is not totally profitable.
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6 Appendix. Balanced games([4])

Definition 4. A collection B of non-empty subsets of N is called a balanced collection
if there exists positive number λT for all T ∈ B such that

∑
T∈B λT 1T = 1 holds, where

1T is the indicator function of a set T , that is 1T (t) = 1 if t ∈ T and 1T (t) = 0 if t /∈ T .

Definition 5. A cooperative game (N, v) is called a balanced game if and only if for
every balanced collection B with weights {λT }T∈B the following holds:

∑

T∈B
λT 1T v(T ) ≤ v(N).

Propositon 2. (Theorem 1.3.5 of ([4])) A cooperative game has a non-empty core if
and only if it is balanced.

Theorem 3. If a cooperative game (N, v) with v(N) ≥ 0 is totally profitable, then it
is balanced.

proof. Since v(T ) ≤ |T |v(N)/|N |, for every balanced collection B with weights
{λT }T∈B, we have

∑

T∈B
λT 1T v(T ) ≤

∑

T∈B
λT 1T v(N)|T |/|N |

≤
∑

T∈B
λT 1T v(N) (since v(N) ≥ 0 and |T |/|N | ≤ 1)

= v(N).

In case of a symmetric game, this condition is also a necessary condition([29], p.27
Theorem 2.5).
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